Function plot for ceteris_paribus object visualise estimated survival curve of mean probabilities in chosen time points. Black lines on each plot correspond to survival curve for our new observation specified in the ceteris_paribus
function.
# S3 method for surv_ceteris_paribus_explainer plot(x, ..., selected_variable = NULL, scale_type = "factor", scale_col = NULL, ncol = 1)
x | object of class "surv_ceteris_paribus_explainer" |
---|---|
... | other arguments |
selected_variable | name of variable we want to draw ceteris paribus plot |
scale_type | type of scale of colors, either "discrete" or "gradient" |
scale_col | vector containing values of low and high ends of the gradient, when "gradient" type of scale was chosen |
ncol | number of columns for faceting |
library(survxai) library(rms) data("pbcTest") data("pbcTrain") predict_times <- function(model, data, times){ prob <- rms::survest(model, data, times = times)$surv return(prob) } cph_model <- cph(Surv(years, status)~., data=pbcTrain, surv=TRUE, x = TRUE, y=TRUE) surve_cph <- explain(model = cph_model, data = pbcTest[,-c(1,5)], y = Surv(pbcTest$years, pbcTest$status), predict_function = predict_times) cp_cph <- ceteris_paribus(surve_cph, pbcTest[1,-c(1,5)]) plot(cp_cph)