Function plot for surv_breakdown object visualise estimated survival curve of mean probabilities in chosen time points.
# S3 method for surv_prediction_breakdown_explainer plot(x, ..., numerate = TRUE, lines = TRUE, lines_type = 1, lines_col = "black", scale_col = c("#010059", "#e0f6fb"))
x | an object of class "surv_prediction_breakdown_explainer" |
---|---|
... | other arguments, for example additional object of class "surv_prediction_breakdown_explainer" |
numerate | logical; indicating whether we want to number curves |
lines | logical; indicating whether we want to add lines on chosen time point or probability |
lines_type | a type of line; see http://sape.inf.usi.ch/quick-reference/ggplot2/linetype |
lines_col | a color of line |
scale_col | a vector containig two colors for gradient scale in legend |
library(survxai) library(rms) data("pbcTest") data("pbcTrain") predict_times <- function(model, data, times){ prob <- rms::survest(model, data, times = times)$surv return(prob) } cph_model <- cph(Surv(years, status)~., data=pbcTrain, surv=TRUE, x = TRUE, y=TRUE) surve_cph <- explain(model = cph_model, data = pbcTest[,-c(1,5)], y = Surv(pbcTest$years, pbcTest$status), predict_function = predict_times) broken_prediction <- prediction_breakdown(surve_cph, pbc[1,-c(1,2)]) plot(broken_prediction)